ABSTRACT

Unlike many alcoholic beverages beer is inherently unstable. In chemical (as opposed to microbiological) terms this instability can be considered – and is here reviewed – in the categories of colloidal instability, foam, gushing, flavour instability and light sensitivity.

Key words: Beer, bits, flavour instability, foam, gushing, haze, light-struck, precipitates.

INTRODUCTION

Beer is inherently unstable. Its properties change with time, either in a very short period such as during the drinking experience (e.g. foam collapse and the appearance of light-struck character) and over rather longer periods (e.g. haze development and flavour deterioration).

It is possible to classify beer instability into several types:

- Biological
- Physical (haze, turbidity)
- Foam
- Gushing
- Flavour
- Light-struck.

Biological instability, viz. the growth of micro-organisms in beer, is the subject of a separate 125th anniversary review. This paper reviews the current understanding of the other forms of instability. The author and others have provided reviews on haze9,14,15, foam43, flavour instability12,13,15,16,154, gushing29,46,131 and light-struck40,150. The present paper will highlight what the author perceives to be the most important facets of the literature in each case, with an emphasis on more recent findings which post-date earlier reviews.

PHYSICAL INSTABILITY

Also known as colloidal instability, we can sub-divide physical instability9 into the categories of

- Precipitates
- Bits
- Haze
- Invisible haze.

Precipitates

Precipitates tend to develop when beer is subjected to extremes of temperature. One early report was of a precipitate comprising β-glucan that arose in a high alcohol beer that had been inadvertently frozen48. This report highlights the importance of low temperature in driving materials from solution101. With the exception of possibilities for freeze concentration and the less extreme “ice beer” technology, there is no practical opportunity to freeze beer in breweries to boost the removal from solution of colloidal materials (water swells when frozen and that would be undesirable if vessel integrity was to be maintained). Equally it is important that beer is not inadvertently frozen in transport and storage. Gjertsen’s report48, however, also highlights that it is not only protein and polyphenol that must be considered when discussing colloidal instability of beer.

At the other extreme, beer exposed to high temperatures may also develop precipitates. One such example was an alcohol-free beer heated to temperatures exceeding 50°C in a Middle Eastern market, developing a gelatinous precipitate as a result of the interaction between isinglass fining material and the foam stabilizer propylene glycol alginate9.

Bits

If not noticed in package (perhaps because much beer is in cans as opposed to bottles), precipitates are still a problem if beer is subsequently dispensed into glasses, because they will disintegrate into bits, discrete particles suspended in beer which otherwise has a “bright” background.

Such bits are not always associated with precipitate formation and, indeed, may be very difficult to see clearly, which means that they do not always present an obvious problem as does distinct turbidity in a beer, which is expected to be bright. The surest way to detect bits is to filter the beer through a filter paper.
ameter paper) and stain with methylene blue. The method can be semi-quantified by having comparison papers in which different quantities of bits have been stained.

It is sometimes seen that bits are a problem associated with insolubilisation of additions made to beer (e.g. see above). Published examples include the famous case associated with the demise of the Schlitz brewery and that of papain cross-reacting with PGA during pasteurisation. However materials endogenous to beer can also be problematic: Walters et al.160 reported the development of bits due to protein and pentosan that arose during the fobbing of beer inside packages as they were shipped around the globe. This illustrates a second truism: that agitation of beer exacerbates clarity problems.

Haze

“Haze proper”, namely that which delivers a uniform lack of clarity to a beer, can arise from a number of materials (in addition to the growth of living organisms): starch88, pentosans36, oxalic acid51 and of course protein-polypeptide complexes. Less common causes reported have been can lid lubricants130 and dead bacteria mainly from malt157. Haze is customarily divided into “chill haze”, which develops when beer is chilled to 0°C, but returns into solution when the beer is warmed to 20°C, and “permanent haze”, which is present in beer at all practical temperatures. The extent to which visible haze is detectable by consumers and how significant it is concerning their preference has been investigated32,132.

Invisible haze

Sometimes called “pseudo hazes”74, these are due to very small particles (<0.1 µm) that cause high levels of light scatter when haze is measured at 90° to incident. Identified causes include tiny particles originating in un-modified regions of the starchy endosperm of barley74, retrograded starch162 and polysaccharides sloughed off the surface of yeast cells89.

Proteins, polyphenols and colloidal instability

Outtrup et al.112,113 highlighted that the most pertinent polypeptides in beer with regard to colloidal instability are those rich in proline and glutamine and which originate in the hordein fraction of barley. Outtrup also emphasised the importance of hydrophobic amino acid residues with regard to the growth of haze particles and it should be emphasised that there can be no absolute distinction between haze-potentiating and foaming polypeptides, the latter being noted for their hydrophobic character (see later). Ishibashi et al.71 used immunological techniques to show that antibodies raised against haze reacted with proteins classified as haze polypeptides, but also those claimed to be foam-stabilizing.

Monomeric polyphenols, such as catechin, become haze-potentiating when they are polymerized through oxidation98,111. McMurrough et al.97 suggest that dimers represent the most potent entities.

Siebert and Lynn134,136 presented a model to explain the interaction of dimeric polyphenols and proline-rich polypeptides in the production of chill haze and noted that pH has a significant impact on these interactions133.

Enhancing the colloidal shelf life of beer

The whole of the malting and brewing processes can be thought of as an exercise in diminishing the levels of materials in beer that will tend to come out of solution as hazes, bits and/or precipitates. Certainly adequate and homogenous malt modification is important if the risk of β-glucan-derived turbidity is to be minimized8. This can be augmented by the use of low temperature mashing-in protocols and possibly the use of exogenous enzymes, with combinations of β-glucanases and xylanases being especially efficacious127. Adequate calcium to eliminate oxalate problems is important27. Two critical stages for the removal of colloidal sensitive materials are a vigorous rolling boil7 and cold conditioning101. Downstream, sensitive protein can be removed by silica preparations30, tannic acid105, papain32 and prolly endoproteinase91. Reduced input of haze-promoting polyphenols can be achieved by the use of low proanthocyanidin barleys117, alkaline steeping of grain38 or even dehusked grain73. Hop extracts are devoid of polyphenols84. Downstream, polyphenols may be removed by polyvinylpolypyrrolidone109.

Predicting the colloidal shelf life of beer

A diversity of methods have been proposed and used in an attempt to forecast the physical shelf life of beer. They can be divided into methods that (a) measure specific haze components (b) “force” the beer, thereby accelerating the development of haze (and other elements of colloidal instability notably precipitates and/or bits). Clearly the first type of method has serious inadequacies if only one or a relatively few are performed. For example, one method may not reveal a beer to have a worrisome level of haze-forming protein – but that says nothing about its content of polysaccharides, oxalate and so on. For this reason, some brewers have based their predictive techniques on a combination of a pair of such methods, e.g. measurements of protein and polyphenol, but even that may be inadequate.

The second type of method is more reasonable, as (depending on its precise nature) it should assess the tendency of all colloidal-sensitive materials to “drop” out of solution. These methods can be divided into those that challenge the beer by extremes of heat or by hot-cold cycling and those that involve adding an agent (notably alcohol) that, allied to extreme chilling, will lead to any material that has a tendency to leave solution so to do.

In terms of the former type of method we can include:

i) for protein: the saturated ammonium sulphate precipitation limit (SASPL) test and the tannic acid precipitation test23,26,128

ii) for polyphenol: the colorimetric determination of total polyphenol, titration with polyvinylpyrrolidone (PVP) and high performance liquid chromatography135.

Amongst the forcing tests108 are:

i) The European Brewery Convention (1963 method) in which beer is held at 60°C for 7 days then cooled to 0°C for 24 hours and the haze measured.

ii) The Harp method in which the beer is stored for 4 weeks at 37°C followed by 8 hours at 0°C and the haze measured.
iii) Various cycling methods, such as the one that holds
beer for 24 hours at 37°C then for 24 hours at 0°C,
this supposedly representing the equivalent of one
month of storage at non-extreme ambient tempera-
tures.

Perhaps of rather more value are tests in which col-
loidal sensitive materials are forced out of solution. The
most famous of these is the Chapon test120, in which a sam-
ple of beer is chilled to –8°C without freezing (added
alcohol prevents freezing) and left for 8 hours before the
chill haze is measured. This type of test is especially valu-
able because any material that displays a tendency to fall
out of solution is likely to be detected in this test, which
combines the very low temperature and the added precipi-
tant (ethanol).

FOAM STABILITY

Aesthetics of foam

Most beer drinkers are inclined to prefer beer display-
ing stable foam11, although there are national and regional
differences140,141 and a possible gender distinction with
regard to the preference for seeing foam adhering to the
side of the glass (cling, lacing)121.

Foam physics

The achievement of stable foam on beer is dependent
upon an understanding and application of best practice
founded upon physics and chemistry.

Beers are supersaturated solutions of carbon dioxide,
but nonetheless foam formation is dependent upon nuclea-
tion phenomena occurring55, which will occur if there are
particles in beer or scratches on the glass118, but which can
be induced by vigorous dispense, the use of glasses fea-
turing nucleation sites and in-package devices such as the
widget60. As foams comprising small bubbles tend to be
more stable, efforts to generate small diameter bubbles in
these nucleation events are important14.

The production of foam represents a huge increase in
surface area, which is counter to the force of surface
tension120. That this collapse is delayed in beer is due to the
presence of surface active molecules (see later) that enter
into the bubble wall and form a framework that holds it
together. Some of these molecules will also have a ten-
dency to retard the drainage of liquid beer from the foam,
which also contributes to the longevity of the head.

The most important physical event leading to foam de-
cay is the collapse of bubbles, due to coalescence and
(much more importantly) through disproportionation120.
This is the passage of gas from a small bubble to a larger
bubble, leading to the collapse of the former and the in-
crease in size of the latter to unappealing proportions.
This is the primary reason why a uniform distribution of
small bubbles is desirable for enhanced foam stability.

Disproportionation is described by the DeVries equa-
tion

\[r_t^2 = r_o^2 - \frac{4RTDS \gamma}{P \theta} t \]

where \(r_t \) = the bubble radius at time \(t \)
\(r_o \) = bubble radius at the start
\(R \) = the gas constant (8.3 J K\(^{-1}\) mol\(^{-1}\))
\(T \) = absolute temperature (°K)
\(D \) = the gas diffusion coefficient (m\(^2\) s\(^{-1}\))
\(S \) = the solubility of the gas (mol m\(^{-3}\) Pa\(^{-1}\))
\(\gamma \) = the surface tension
\(t \) = time (s)
\(P \) = pressure
\(\theta \) = the film thickness between bubbles

This explains the enormous benefits that nitrogen gas
(much less soluble than carbon dioxide) has for beer foam
stability10,14,28,104, remembering that nitrogen adversely
impacts the flavour of many beers69.

Foam chemistry

The huge increase in surface area that occurs when
beer foams is in direct opposition to the force of surface
tension, which drives water to occupy the lowest possible
area for a given volume. Stable foam therefore depends
upon the presence of surface active molecules that enter
into the head to form a matrix that counters collapse.

Principal amongst these molecules are the polypeptides
derived from grain6,146 and the bitter acids from hops24. In
each case a principal feature that drives the molecules into
the foam and which contributes to the stabilizing reactions
is hydrophobicity, such that the more hydrophobic the
protein138 or iso-α-acid, the greater is its contribution to
foaming. In the instance of the bitter acids, this means that
the reduced iso-acids, tetra and hexa, afford extremely
stable, albeit coarse, heads65. Minor hop resin components
may also be important139.

Of the hydrophobic polypeptides, the most studied
have been Protein Z66,75 and Lipid Transfer Protein 1
(LTP1)142. The importance of hydrophobicity was espe-
cially highlighted in the latter instance by the observation
that LTP1 is not especially foam active when isolated
from grain, but that its foaming abilities are greatly
boosted by boiling, with the attendant denaturation and
unravelling of the hydrophobic interior25. In terms of protein
Z, it seems that the Z4 component correlated with
hydrophobicity, whereas the reverse was observed for protein Z76.
It has been suggested that protein Z and an α-amylase inhibitor correlate positively
with foam whereas yeast-derived thioredoxin was
possibly foam negative66,67.

The foam stability due to proteins reflects a balance
between the respective levels of polypeptides derived
from hordein and the albuminoid polypeptides Z and
LTP117. The former may have an enhanced tendency to
enter into the bubble wall but, once there, they are not as
foam-stabilizing as the albulins. Picariello et al.116 used
immunological approaches to confirm that hordein- and
albumin-derived polypeptides can be found in foam.
Wang et al.161 confirmed that barley hordeins have good
foaming capacity. It is also understood that proteins asso-
ciated with carbohydrates are important for foaming24,115.
Carbohydrate moieties attached to polypeptides lower the
level to which foaming polypeptides such as LTP are lost
through the brewing process85.

Polypeptides derived from wheat appear to have supe-
rior physicochemical properties as pertains to foaming79.
It has long been recognized experientially that the inclu-
sion of wheat in the gist benefits foam, and it is further
claimed that mashing at increased temperatures22 and
lower pH57 is to the advantage of foam stability. Equally, it is understood that high gravity brewing is detrimental to foam stability55, in part due to stress on the yeast causing the release of damaging proteolytic enzymes.

Other positive contributors to foam stability include Maillard reaction products59, divalent metal ions such as zinc121 and added foam stabilizers, notably propylene glycol alginate56.

Nonetheless, it has been proposed that the majority of foam problems in the trade are not a consequence of a shortage of foam-positive materials, but rather the presence of foam negatives (inhibitors) such as lipids and detergents in inadequately cleaned glassware50. It has been proposed that it is generally the case that beers contain adequate foam-positive entities and deficiencies in the beer itself are more likely to reflect the presence of foam-negative substances83.

Measuring foam stability

No single quantitative procedure can quantify all foam attributes.

Foam stability (head retention) historically has been measured by drainage methods based on a simple glass apparatus2,3,122.

The method developed by Klopper82 and marketed as instruments under the NIBEM trade name measures foam decay based on conductivity detection, while other commercial instruments photometrically measure drainage4,9,19,119. Good correlations were observed between the values determined by diverse methods156.

Simplest of all are the methods based on shaking160, whilst at the other extreme of complexity are those employing video imaging44 and scanning electron microscopy58 to assess parameters such as bubble-size distribution.

Lacing can be assessed by gauging surface coverage of foam photometrically84 or by the lacing index procedure, where laced foam is collected and quantified by ultra violet light absorption19.

Comparison of beers for their ability to generate foam is possible using a nucleation method95.

GUSHING

Despite it being a supersaturated solution of carbon dioxide, beer does not spontaneously erupt into foam unless there is a nucleation phenomenon at play. If a powerful nucleation centre is present in beer, then this can lead to an unwanted immediate foaming once a container is broached69. Most prominent amongst these gushing promoters is the intensely hydrophobic polypeptide hydrophobin160, sourced from fungi such as Fusarium that can contaminate grain144. In recent times, lactic acid bacteria have been deliberately seeded into malt houses to overcome the growth of Fusarium92. Other gushing potentiators include hop resin degradation products1, oxalate129, filter aid breakthrough81, metal ions52, tensides47, uneven carbonation164 and of course agitation.

FLAVOUR INSTABILITY

Probably the most challenging quality problem that remains for brewers is the achievement of flavour stability. However, debate often centres on whether this is more of an issue for the brewer than it is for the consumer. It was found that brand identity has a major impact on selection preferences, apparently rising above the extent to which a given beer displays aged character97. Others have shown that imported beers tend to be preferred to domestic ones, the selection being clearly made on a perceived superiority of such beers, despite the fact that those very beers display aged characteristics deplored by brewers83. It truly could be argued that a consumer can see quite clearly, for instance, whether a beer is “bright” or whether it displays inadequate foam performance, but aromas that professional brewers often regard as unacceptable might be preferred or, at the least, ignored by drinkers.

Assuming, though, that the goal of every brewer should be to minimize flavour change in a product, the challenge is manifest. It can be fairly argued that any change in aroma or taste represents flavour instability15.

As there are literally hundreds of molecules in beer that might change in level in amounts at or above their flavour threshold, it is a far more complex problem than, say, ensuring that the relatively limited number of colloidally-unstable molecules are depleted. Indeed, the flavour thresholds of many substances in beer are remarkably low, for example E-2-nonenal has a flavour threshold of approximately 0.1 ppb.

For this reason it is a more logical approach to adopt procedures which minimize changes in the level of all flavour active molecules in beer12. Such generic approaches fundamentally are reduced to eliminating oxygen and its reactive variants, reducing temperature and incorporation (where permitted) of antioxidants and binding agents, of which sulphur dioxide is the most prominent57,68.

Temperature has a huge impact on the flavour stability of beer and it has been stressed that for every 10°C increase in temperature, then the rate of chemical reactions leading to flavour change in beer is increased between two to three times12.

Before discussing these changes, it is also important to draw attention to the difficulty of drawing firm conclusions from much of the extant literature. As highlighted by Meilgaard100, the number of sensory studies in this field that pass critical examination are few indeed. Furthermore, many of the studies reported on flavour stability assess differences between trial and control brews on the basis of intensity of aged notes. Whilst this is not unimportant, far more relevant is measuring the time taken for the first appearance of a flavour change, whether the loss of a note or the appearance of a note12. This is common sense: for a phenomenon that we talk about in terms of time (“what is this beer’s shelf life?”), we should surely quantify it primarily on the basis of units of time.

Too often, attention is paid to relatively few flavour notes associated with ageing and, of these, cardboard or wet paper is the most frequently cited. This is hopelessly limiting, all the more so when the only chemical entity cited is E-2-nonenal. Whilst important in ageing (although not always155), E-2-nonenal is just one of numerous chemical species that must be considered (see154 for a comprehensive list). Saison et al.125 have narrowed the list...
somewhat, suggesting that cardboard flavour was primarily linked to (E)-2-nonenal. They also confirmed that methional, 3-methylbutanal, 2-furfuryl ethyl ether, β-damascenone and acetaldehyde are key contributors to aged flavour, with (E,E)-2,4-decadienal, phenylacetaldehyde, 2-methylpropanol, diacetyl and 5-hydroxymethylfurfural having somewhat lesser roles. It was stressed by Vanderhaegen et al. that different beers age in different ways and that the importance of separate chemical reactions in this context changes, for example from pale lager beers to those containing specialty malts.

Perhaps too many conclusions regarding factors that impact flavour stability have been made on the basis of chemical or physical measurements rather than on organoleptic analysis, which is perforce the ultimate gauge of whether a process ingredient or stage has an impact on flavour. Prominent amongst these analytical procedures is the use of electron spin resonance spectroscopy (ESR). One interesting recent development is the peroxide challenge test, which gauges a beer’s ability to quench hydrogen peroxide. The greater this capability, the greater the flavour stability as gauged both by ESR and organoleptically.

There is no questioning that oxygen levels in packaged beer should be as low as possible if elongated shelf lives are to be achieved. It is now recognized that air can leak into bottles at the crown cork–neck interface, driving some brewers to revert to pry off crown corks and to investing in oxygen-scavenging crown corks. Nevertheless, it is clear that beer in a can does not suffer from air ingress and neither does a can allow light to encroach. Perhaps the worst small pack medium remains plastic bottles, despite recent developments in materials whereby air ingress through the container wall is now less than in bottles, despite recent developments in materials whereby oxygen levels in the mash would lessen its occurrence. Cortes et al. suggest that organic radicals, produced during roasting of specialty malts, provoke increased oxidation in mashing and more radical production during boiling. In turn this leads to reduced antioxidant and sulphur dioxide levels in the finished beer. This study seemingly contradicts other studies that suggest that Maillard reaction products are important antioxidants.

Apart from leading to aldehydes that contribute to papery character, the degradation of the bitter acids can lead to the development of lingering harsh bitterness. Trans isomers are less stable than cis isomers. The α-acids and β-acids are more potent radical quenchers than are the iso-α-acids and polyphenols. Aldol condensation interactions between different carbonyl compounds can lead to different carbonyl substances.

Sulphur dioxide undoubtedly provides a substantial opportunity to enhance the shelf life of beer, either as an antioxidant per se through its ability to bind the unsaturated carbonyl compounds responsible for aged notes. However, there is a reluctance to use it in markets such as the US, as it must be declared on the label if present in quantities greater than 10 mg/L. Modified lager strains with enhanced SO2 production without increased hydrogen sulphide levels have been described. Other antioxidants native to the raw materials of beer include ferulic acid, colouring agents including Maillard reaction products and polyphenols. It has been reported that the mode of hopping is very significant in respect of the delivery of hop antioxidants into beer. It has even been suggested that adding hop leaves to the brew kettle can suppress radical formation. Enzymes have been suggested as aiding the protection of wort and beer from oxidation, including superoxide dismutase, glucose oxidase and catalase. Fredericksen et al. suggest however that superoxide dismutase and catalase are limited in their ability to restrict radical production in mashing. Gluthathione has been nominated as the main antioxidant found in beer. Ascorbic acid is generally considered to be especially relevant as an antioxidant in a beer context, but Jeney-Nagymate and Fodor suggest that its addition alongside, surprisingly, the water-insoluble α-tocopherol (vitamin E) to cooled wort prior to pitching, benefits shelf life as gauged by ESR.
LIGHT-STRUCK

Exposure of beer to visible and ultra-violet light leads to the degradation of iso-α-acids and the production of 3-methyl-2-butene-1-thiol, and the (for many but not all) reprehensible aroma of skunk[24]. It is now understood that additional substances are produced in the light struck reaction[25]. Brown glass largely (but not entirely) protects against the ingress of light at these wavelengths (350–500 nm), but clear and green glass afford no or little protection. For those intent on packaging beer in such glass containers, one defense against the light-struck reaction is the use of reduced iso-α-acids, which do not degrade to the compounds with the skunk character[26]. An alternative strategy might be to seek to eliminate riboflavin from beer, as it is this substance that transfers light energy into the skunking reaction[27].

CONCLUSION

Much is known about the myriad factors that lead to the instability of beer. When we consider microbiological contamination, foam, physical instability, gushing and light sensitivity, it seems that, for the most part, the understanding of many of the key issues is relatively comprehensive and that reliable strategies are now in place to minimize them as major problems. It is flavour instability that remains the severest challenge.

REFERENCES

(Manuscript accepted for publication December 2011)